Язык программирования rust уроки. Обзор языка программирования Rust

Rust набирает популярность, но при этом многие до сих пор не понимают его ценности и функций. Мы расскажем про основные преимущества языка программирования Rust.

Что общего у Rust и других языков?

В перечисленные определения сложно поверить, это выглядит нереалистичным заявлением, так как ранее все языки выбирали одну из сторон: надёжность или производительность.

Ярким представителем высокой скорости является , но всем нам известно, как часто появляются ошибки из-за неправильного доступа к выделенной памяти, удалённым серверам, а о непредсказуемых выводах результатов работы и говорить нечего. Из-за нескольких потоков записи часто сложно предсказать результат.

Уклон в сторону надёжности лучшим образом демонстрирует язык Haskell , который имеет компилируемую природу и обеспечивает высокие показатели безопасности. Всё, что можно компилировать, будет исправно работать. Главный недостаток - это низкая производительность, сложно представить проект, требующий высокой скорости написанный на Haskell .

Нейтральную позицию, некоего баланса занимают , и остальные. В них уклон поставлен в практичность.

Rust вобрал в себя лучшие характеристики C++ и Haskell , а также смог сохранить достаточную практичность и функциональность от остальных конкурентов.

В чем же прелесть языка Rust?

Волшебные характеристики Rust стали доступными при помощи основ компилирования и информации о сущности владельца (owner ), о программисте, который только временно отлаживает или занял проект (mutable borrow ), а также об обычном зрителе (immutable borrow ).

При программировании на Java или же C++ , приходится удерживать данную информацию в памяти, хотя вид данных несколько отличается. В Rust это реализуется с помощью языковых конструкций, данная информация облегчает компилятору задачу установления личности и правильности подбора модели поведения. Благодаря компилятору можно гарантировать устранение потенциальных и частых проблем в ходе выполнения кода.

Этому языку необходим несколько отличающийся подход. Несмотря на непривычность, алгоритм достаточно очевидный и эффективный. Теперь мы определимся с основами языка, которые способны завести в тупик при начале изучения:

  1. Полностью устранена система наследования, для замены используется особая структура и способности, подробнее traits .
  2. Присутствуют указатели исключительно в коде, который не подвергается дополнительной защите, то есть внутри функции unsafe {} . Для их замены в безопасном коде используются ссылки, которые обеспечивают правильное указание на имеющиеся объекты.
  3. Если ссылка статическая и ведёт к определённому элементу, например, immutable borrow = &Object , до момента смерти ссылки она не может изменяться любым пользователем.
  4. При наличии изменяющейся ссылки mutable borrow = &mut Object , нельзя прочитать содержимое любому другому пользователю весь период жизни ссылки.
  5. Разработчики делают акцент на Mac и *nix платформы, из-за этого работать на системе Windows можно только с использованием среды GNU .

Достаточно важна целевая аудитория, у языка Rust достаточное активное содружество, развитая система общения и обучения. Рекомендуем посетить канал IRC или Reddit . До сегодняшнего дня уже написано , а большинство из них до сих пор постоянно развиваются, их проекты можно найти на GitHub .

Наибольшая популярность языка отмечается у разработчиков, которые стали на путь создания графики и игр . Существуют даже наработки для создания полноценной операционной системы , но они ещё только разрабатываются. В ближайшей перспективе присутствует возможность написания клиентских программ и веб-серверов . Все перечисленные задачи вполне по плечу Rust.

Главным, а, наверное, и единственным, недостатком является его чрезмерно активное развитие. По мере выхода новых версий несколько изменяется синтаксис, периодически появляется необходимость изменять логику поведения и разработки, чтобы подстроиться под появившиеся возможности. Ситуация будет продолжать ещё некоторое время до момента выхода Rust-1.0 .

Следить за изменениями в языке программирования помогает постоянная рубрика «This Week in Rust », которую можно найти в Rust "n Stuffs по ссылке . Здесь всегда есть информация о предшествующих и прошедших изменениях, а также перспективах развития языка.

Перевод статьи Федерико Мена-Кинтеро, который, наряду с Мигелем де Икаса, основал проект GNOME - широко используемую, свободную графическую среду, в основном для систем GNU/Linux. Перед этим он некоторое время поддерживал GIMP . Сейчас Федерико активно развивает библиотеку librsvg с использованием языка программирования Rust. По его мнению, разработка достигла момента, когда портирование некоторых крупных компонент с C на Rust выглядит более лёгкой задачей, чем просто добавление аксессоров к ним. Федерико часто приходится переключаться с C на Rust и обратно, и в статье он рассказывает, почему считает C очень и очень примитивным языком для современного ПО.

Своего рода элегия по C

Я влюбился в язык программирования C около 24-ёх лет назад. Я выучил основы, прочитав испанский перевод второго издания «Языка программирования C» Кернигана/Ритчи (K&R) . До этого я писал на Turbo Pascal в довольно низкоуровневой манере - с указателями и ручным выделением памяти. После него C казался освежающим и мощным.

К&R - это отличная книга благодаря стилю изложения и лаконичности программирования. Эта книга даже учит, как реализовать простые функции malloc/free , что крайне поучительно. Даже такие низкоуровневые конструкции, которые выглядят как часть языка, могут быть реализованы на самом языке!

В последующие годы я хорошо освоил C. Это простой язык с небольшой стандартной библиотекой. Наверное, это был идеальный язык для реализации ядер Unix в 20 000 строк кода или около того.

GIMP и GTK+ научили меня тому, как использовать модный объектно-ориентированный подход в C. GNOME показал, как поддерживать крупномасштабные проекты, написанные на C. Стало казаться, что 20 000 строк C кода - это проект, который можно практически полностью понять за пару недель.

Но наши кодовые базы уже далеко не такие маленькие. Сейчас в процессе разработки программного обеспечения огромные надежды возлагаются на функции, доступные в стандартной библиотеке языка.

Опыт использования C

Положительный

  • Чтение исходного кода проекта POV-Ray впервые и изучение того, как использовать объектно-ориентированный подход и наследование в чистом C;
  • Чтение исходного кода проекта GTK+ и изучение читаемого, поддерживаемого и чистого стиля написания кода на C;
  • Чтение исходного кода проекта SIOD, а также ранних исходников проекта Guile и понимание того, как интерпретатор Scheme может быть написан на C;
  • Написание первых версий Eye of Gnome и доработка системы микротайлового рендеринга.

Негативный

  • Работа в команде Evolution, когда программа постоянно падала. Мы были вынуждены приобрести машину с Solaris на борту, чтобы иметь возможность купить Purify; в те времена Valgrind-а еще не существовало;
  • Отладка взаимных блокировок потоков в gnome-vfs;
  • Безуспешная отладка Mesa;
  • Когда мне передали исходники первых версий Nautilus-share, я увидел, что free() вообще не используется;
  • Попытки рефакторинга кода, о стратегии управления памятью которого я не имел понятия;
  • Попытка сделать библиотеку из кода, кишащего глобальными переменными, и в котором ни одна функция не помечена как static .

Фичи Rust, которых не хватает в C

Автоматическое управление ресурсами

Один из первых блог-постов, которые я прочитал о Rust, назывался «В Rust вам никогда не придётся закрывать сокет» . Rust заимствует у C++ идеи об идиоме (Resource Acquisition Is Initialization, получение ресурса есть инициализация) и умных указателях, добавляет принцип единоличного владения для значений и предоставляет механизм автоматического, детерминированного управления ресурсами в очень изящной упаковке.

  • Автоматическое: не нужно вызывать free() вручную. Память освободится, файлы закроются, мьютексы разблокируются, когда переменные выйдут из зоны видимости. Если вам нужно написать обёртку для стороннего ресурса, то всё, что нужно сделать, это реализовать типаж Drop. Обёрнутый ресурс ощущается как часть языка, потому что вам не приходится нянчиться с его временем жизни вручную;
  • Детерминированное: ресурсы создаются (память выделяется и инициализируется, файлы открываются и т. д.) и уничтожаются, когда выходят из зоны видимости. Никакой сборки мусора: ресурсы действительно освобождаются, когда вы закрываете скобку. Вы начинаете видеть время жизни данных в своей программе как дерево вызовов функций.

После того, как постоянно забываешь освобождать/закрывать/уничтожать объекты в C, или, ещё хуже, пытаешься понять, где в чужом коде забыли сделать что-то из этого (или ошибочно сделали дважды )… я просто больше этого не хочу.

Дженерики

Vec - это действительно вектор, размер элементов которого равен размеру объекта типа T . Это не массив указателей на объекты, память для которых выделялась отдельно. Он специально компилируется в код, который может работать только с объектами типа T .

После написания большого количества сомнительных макросов на C, чтобы сделать что-то похожее… я больше этого не хочу.

Типажи - это больше, чем просто интерфейсы

Rust - это не Java-подобный объектно-ориентированный язык, подробнее об этом можно прочитать в open-source книге «The Rust Programming Language» . Вместо этого в нём есть типажи, которые поначалу похожи на интерфейсы в Java, - простой способ осуществления динамического переключения (dynamic dispatch), так что если объект реализует Drawable , то можно предположить, что у него есть метод draw() .

Однако типажи - это более мощный инструмент. Одной из отличительных особенностей типажей можно считать ассоциированные типы (associated types). Например, Rust предоставляет типаж Iterator , который вы можете реализовать:

Pub trait Iterator { type Item; fn next(&mut self) -> Option; }

Это означает, что всякий раз, когда вы реализуете этот типаж для какого-либо объекта, поддерживающего итерирование, вы также указываете тип Item для значений, которые он выдаёт. Если вы вызываете next() и элементы ещё остались, вы получите Some(ТипВашегоЭлемента) . Когда у вашего итератора закончатся элементы, он вернет None .

Ассоциированные типы могут ссылаться на другие типажи.

Например, в Rust вы можете использовать циклы for со всем, что реализует типаж IntoIterator:

Pub trait IntoIterator { /// Тип элементов, по которым идёт итерация type Item; /// В какой тип итератора мы преобразуемся? type IntoIter: Iterator; fn into_iter(self) -> Self::IntoIter; }

Когда реализуете этот типаж, вы должны указать и тип элементов, которые будет выдавать ваш итератор, и сам тип IntoIter , который реализует типаж Iterator и хранит состояние вашего итератора.

Таким образом, вы можете построить настоящую сеть типов, которые ссылаются друг на друга. Вы можете написать типаж, который говорит: «Я могу сделать foo и bar, но только если вы дадите мне тип, который умеет делать вот это и это».

Срезы

Я уже писал о том, насколько в C не хватает срезов (slices) для работы со строками и какая это головная боль, когда привык, что они под рукой.

Современные инструменты для управления зависимостями

Вместо того, чтобы

  • Запускать pkg-config руками или через Autotools-макрос;
  • Сражаться с include-путями в заголовочных файлах…
  • … и библиотечных файлах;
  • И, по сути, полагаться на то, что пользователь гарантирует установку верных версий библиотек,

вы пишете файл Cargo.toml , в котором перечисляются названия и версии всех наших зависимостей. Они будут загружены из общеизвестного источника или из любого другого, указанного вами.

Не нужно сражаться с зависимостями. Оно просто работает, когда вы набираете cargo build .

Тесты

В C очень сложно покрывать код тестами по нескольким причинам:

  • Внутренние функции часто помечены как static . Это означает, что они не могут быть вызваны вне файла, в котором эта функция определена. Тестовая программа вынуждена либо #include -ить содержимое исходника, в котором функция объявлена, либо использовать #ifdef , чтобы убирать static только при тестировании;
  • Вам придётся плясать с бубном вокруг вашего Makefile, чтобы слинковать тестовую программу с определённой частью зависимостей основной или с какой-то частью оставшейся программы;
  • Вам придётся выбрать фреймворк для тестирования. Вам придётся зарегистрировать свои тесты в фреймворке для тестирования. Вам придётся изучить этот фреймворк.

В Rust вы пишете

# fn test_that_foo_works() { assert!(foo() == expected_result); }

в любом месте программы или библиотеки, и, когда вы набираете cargo test , ОНО ПРОСТО, *****, РАБОТАЕТ. Этот код линкуется только в тестовый исполняемый файл. Не нужно ничего компилировать дважды вручную, писать Makefile-магию или разбираться, как вытащить внутренние функции для тестирования.

Для меня это одна из главных киллер-фич языка.

Документация с тестами

Rust генерирует документацию на основе комментариев, размеченных с помощью Markdown. Код из документации запускается как обычные тесты . Вы можете показывать, как функция должна использоваться, одновременно тестируя её:

/// Multiples the specified number by two /// /// ``` /// assert_eq!(multiply_by_two(5), 10); /// ``` fn multiply_by_two(x: i32) -> i32 { x * 2 }

Код из примера запускается как тест, чтобы убедиться, что ваша документация своевременно обновляется вместе с кодом программы.

Гигиеничные макросы

В Rust особые гигиеничные макросы, позволяющие избежать проблем, при которых во время разворачивания C макросов происходит непреднамеренное затенение идентификаторов в коде. Вам больше не нужно писать макросы, заключая все символы в скобки, чтобы max(5 + 3, 4) работал правильно.

Никакого неявного приведения типов

Все эти баги, которые появляются в C из-за непреднамеренного приведения int к short или к char и т. п. - в Rust их нет. Вы должны приводить типы явно.

Никакого целочисленного переполнения

Этим всё сказано.

Как правило, никакого неопределённого поведения в безопасном режиме

В Rust, если что-то вызывает неопределенное поведение в «безопасном режиме» (всё, что написано вне блоков unsafe {}), это расценивается как баг самого языка. Например, можно сделать побитовый сдвиг отрицательного целого числа вправо и произойдёт именно то, что вы ожидаете.

Сопоставление с образцом

Знаете, как gcc выдает предупреждение, если вы используете switch() с перечислением (enum), но обработаете не все варианты? Это детский сад по сравнению с Rust.

В Rust в различных местах используется сопоставление с образцом . Он умеет делать эту штуку с перечислениями в match-выражении. Он поддерживает деструктурирование, а это значит, что можно возвращать несколько значений из функции:

Impl f64 { pub fn sin_cos(self) -> (f64, f64); } let angle: f64 = 42.0; let (sin_angle, cos_angle) = angle.sin_cos();

match работает на строках. ВЫ МОЖЕТЕ МАТЧИТЬ ГРЁБАНЫЕ СТРОКИ.

Let color = "зеленый"; match color { "красный" => println!("Это красный"), "зеленый" => println!("Это зеленый"), _ => println!("Что-то другое"), }

Вы же знаете, насколько такое плохо читается?

my_func(true, false, false)

Как насчет того, чтобы вместо этого использовать сопоставление с образцом на аргументах функции:

Pub struct Fubarize(pub bool); pub struct Frobnify(pub bool); pub struct Bazificate(pub bool); fn my_func(Fubarize(fub): Fubarize, Frobnify(frob): Frobnify, Bazificate(baz): Bazificate) { if fub { ...; } if frob && baz { ...; } } ... my_func(Fubarize(true), Frobnify(false), Bazificate(true));

Стандартная полезная обработка ошибок

Я подробно останавливался на этом. Больше никаких булевых возвращаемых значений без нормального описания ошибки, никаких случайно проигнорированных ошибок, никакой обработки исключительных ситуаций longjmp-ами.

#

Если вы пишете новый тип (скажем, структуру с кучей полей), то можно написать # , и Rust будет знать, как автоматически напечатать содержимое этого типа для отладки. Больше не нужно руками писать специальную функцию, которую затем придётся вызывать из gdb, только для того, чтобы посмотреть содержимое полей пользовательского типа.

Замыкания

Вам больше не придётся передавать указатели на функцию и user_data вручную.

Заключение

Я пока не попробовал «fearless concurrency» , где компилятор может предотвращать гонки данных в многопоточном коде. Я полагаю, что это в корне меняет положение дел для людей, которые пишут параллельный код на регулярной основе.

C - это старый язык с примитивными конструкциями и примитивными инструментами. Он хорошо подходил для небольших однопроцессорных Unix-ядер, которые работали в доверенных, академических средах. Но для современного программного обеспечения он больше не подходит.

Rust непросто освоить, но я уверен, что это того стоит. Сложность в том, что язык требует от вас глубокого понимания кода, который вы хотите написать. Я думаю, что это один из тех языков, которые делают вас лучше как программиста и позволяют решать более амбициозные проблемы.

Rust - новый экспериментальный язык программирования, разрабатываемый Mozilla. Язык компилируемый и мультипарадигмальный, позиционируется как альтернатива С/С++, что уже само по себе интересно, так как даже претендентов на конкуренцию не так уж и много. Можно вспомнить D Вальтера Брайта или Go от Google.
В Rust поддерживаются функицональное, параллельное, процедурное и объектно-ориентированное программирование, т.е. почти весь спектр реально используемых в прикладном программировании парадигм.

Я не ставлю целью перевести документацию (к тому же она весьма скудная и постоянно изменяется, т.к. официального релиза языка еще не было), вместо этого хочется осветить наиболее интересные фичи языка. Информация собрана как из официальной документации, так и из крайне немногочисленных упоминаний языка на просторах Интернета.

Первое впечатление

Синтаксис языка строится в традиционном си-подобном стиле (что не может не радовать, так как это уже стандарт де-факто). Естественно, всем известные ошибки дизайна С/С++ учтены.
Традиционный Hello World выглядит так:
use std; fn main(args: ) { std::io::println("hello world from " + args + "!"); }

Пример чуть посложнее - функция расчета факториала:

Fn fac(n: int) -> int { let result = 1, i = 1; while i <= n { result *= i; i += 1; } ret result; }

Как видно из примера, функции объявляются в «функциональном» стиле (такой стиль имеет некоторые преимущества перед традиционным «int fac(int n)»). Видим автоматический вывод типов (ключевое слово let), отсутствие круглых скобок у аргумента while (аналогично Go). Еще сразу бросается в глаза компактность ключевых слов. Создатели Rust дейтсвительно целенаправленно сделали все ключевые слова как можно более короткими, и, скажу честно, мне это нравится.

Мелкие, но интересные синтаксические особенности

  • В числовые константы можно вставлять подчеркивания. Удобная штука, сейчас эту возможность добавляют во многие новые языки.
    0xffff_ffff_ffff_ffff_ffff_ffff
  • Двоичные константы. Конечно, настоящий программист должен преобразовывать bin в hex в уме, но ведь так удобнее! 0b1111_1111_1001_0000
  • Тела любых операторов (даже состоящие из единственного выражения) должны быть обязательно заключены в фигурные скобки. К примеру, в Си можно было написать if(x>0) foo(); , в Rust нужно обязательно поставить фигурнные скобки вокруг foo()
  • Зато аргументы операторов if, while и подобных не нужно заключать в кругные скобки
  • во многих случаях блоки кода могут рассматриваться как выражения. В частности, возможно например такое:
    let x = if the_stars_align() { 4 } else if something_else() { 3 } else { 0 };
  • синтаксис объявления функций - сначала ключевое слово fn, затем список аргументов, тип аргумента указывается после имени, затем, если функция возвращает значение - стрелочка "->" и тип возвращаемого значения
  • аналогичным образом объявляются переменные: ключевое слово let, имя переменной, после переменной можно через двоеточие уточнить тип, и затем - присвоить начальное значение.
    let count: int = 5;
  • по умолчанию все переменные неизменяемые; для объявления изменяемых переменных используется ключевое слово mutable.
  • имена базовых типов - самые компактные из всех, которые мне встречались: i8, i16, i32, i64, u8, u16, u32, u64,f32, f64
  • как уже было сказано выше, поддерживается автоматический вывод типов
В языке присутствую встроенные средства отладки программ:
Ключевое слово fail завершает текущий процесс
Ключевое слово log выводит любое выражение языка в лог (например, в stderr)
Ключевое слово assert проверяет выражение, и если оно ложно, завершает текущий процесс
Ключевое слово note позволяет вывести дополнительную инфорацию в случае аварийного завершения процесса.

Типы данных

Rust, подобно Go, поддерживает структурную типизацию (хотя, по утверждению авторов, языки развивались независимо, так что это влияние их общих предшественников - Alef, Limbo и т.д.). Что такое структурная типизация? Например, у вас в каком-то файле объявлена структура (или, в терминологии Rust, «запись»)
type point = {x: float, y: float};
Вы можете объявить кучу переменных и функций с типами аргументов «point». Затем, где-нибудь в другом месте, вы можете объявить какую-нибудь другую структуру, например
type MySuperPoint = {x: float, y: float};
и переменные этого типа будут полностью совместимы с переменными типа point.

В противоположность этому, номинативная типизация, принятая в С, С++,C# и Java таких конструкций не допускает. При номинативной типизации каждая структура - это уникальный тип, по умолчанию несовместимый с другими типами.

Структуры в Rust называются «записи» (record). Также имеются кортежи - это те же записи, но с безымянными полями. Элементы кортежа, в отличие от элементов записи, не могут быть изменяемыми.

Имеются вектора - в чем-то подобные обычным массивам, а в чем-то - типу std::vector из stl. При инициализации списком используются квадратные скобки, а не фигурные как в С/С++

Let myvec = ;

Вектор, тем ни менее - динамическая структура данных, в частности, вектора поддерживают конкатенацию.

Let v: mutable = ; v += ;

Есть шаблоны. Их синтаксис вполне логичен, без нагромождений «template» из С++. Поддерживаются шаблоны функций и типов данных.

Fn for_rev(v: [T], act: block(T)) { let i = std::vec::len(v); while i > 0u { i -= 1u; act(v[i]); } } type circular_buf = {start: uint, end: uint, buf: };

Язык поддерживает так называемые теги . Это не что иное, как union из Си, с дополнительным полем - кодом используемого варианта (то есть нечто общее между объединением и перечислением). Или, с точки зрения теории - алгебраический тип данных.

Tag shape { circle(point, float); rectangle(point, point); }

В простейшем случае тег идентичен перечислению:

Tag animal { dog; cat; } let a: animal = dog; a = cat;
В более сложных случаях каждый элемент «перечисления» - самостоятельная структура, имеющая свой «конструктор».
Еще интересный пример - рекурсивная структура, с помощью которой задается объект типа «список»:
tag list { nil; cons(T, @list); } let a: list = cons(10, @cons(12, @nil));
Теги могут участвовать в выражениях сопоставления с образцом, которые могут быть достаточно сложными.
alt x { cons(a, @cons(b, _)) { process_pair(a,b); } cons(10, _) { process_ten(); } _ { fail; } }

Сопоставление с образцом (pattern matching)

Для начала можно рассматривать паттерн матчинг как улучшенный switch. Используется ключевое слово alt, после которого следует анализируемое выражение, а затем в теле оператора - паттерны и действия в случае совпадения с паттернами.
alt my_number { 0 { std::io::println("zero"); } 1 | 2 { std::io::println("one or two"); } 3 to 10 { std::io::println("three to ten"); } _ { std::io::println("something else"); } }
В качестве «паттеронов» можно использовать не только константы (как в Си), но и более сложные выражения - переменные, кортежи, диапазоны, типы, символы-заполнители (placeholders, "_"). Можно прописывать дополнительные условия с помощью оператора when, следующего сразу за паттерном. Существует специальный вариант оператора для матчинга типов. Такое возможно, поскольку в языке присутствует универсальный вариантный тип any , объекты которого могут содержать значения любого типа.

Указатели. Кроме обычных «сишных» указателей, в Rust поддерживаются специальные «умные» указатели со встроенным подсчетом ссылок - разделяемые (Shared boxes) и уникальные (Unique boxes). Они в чем-то подобны shared_ptr и unique_ptr из С++. Они имеют свой синтаксис: @ для разделяемых и ~ для уникальных. Для уникальных указателей вместо копирования существует специальная операция - перемещение:
let x = ~10; let y <- x;
после такого перемещения указатель x деинициализируется.

Замыкания, частичное применение, итераторы

С этого места начинается функциональное программирование. В Rust полностью поддерживается концепция функций высшего порядка - то есть функций, которые могут принимать в качестве своих аргументов и возвращать другие функции.

1. Ключевое слово lambda используется для объявления вложенной функции или функционального типа данных.

Fn make_plus_function(x: int) -> lambda(int) -> int { lambda(y: int) -> int { x + y } } let plus_two = make_plus_function(2); assert plus_two(3) == 5;

В этом примере мы имеем функцию make_plus_function, принимающую один аргумент «x» типа int и возвращающую функцию типа «int->int» (здесь lambda - ключевое слово). В теле функции описывается эта самая фунция. Немного сбивает с толку отсутствие оператора «return», впрочем, для ФП это обычное дело.

2. Ключевое слово block используется для объявления функционального типа - аргумента функции, в качестве которого можно подставить нечто, похожее на блок обычного кода.
fn map_int(f: block(int) -> int, vec: ) -> { let result = ; for i in vec { result += ; } ret result; } map_int({|x| x + 1 }, );

Здесь мы имеем функцию, на вход которой подается блок - по сути лямбда-функция типа «int->int», и вектор типа int (о синтаксисе векторов далее). Сам «блок» в вызывающем коде записыавется с помощью несколько необычного синтаксиса {|x| x + 1 }. Лично мне больше нравятся лямбды в C#, символ | упорно воспринимается как битовое ИЛИ (которое, кстати, в Rust также есть, как и все старые добные сишные операции).

3. Частичное применение - это создание функции на основе другой функции с большим количеством аргументов путем указания значений некоторых аргументов этой другой функции. Для этого используется ключевое слово bind и символ-заполнитель "_":

Let daynum = bind std::vec::position(_, ["mo", "tu", "we", "do", "fr", "sa", "su"])

Чтобы было понятнее, скажу сразу, что такое можно сделать на обычном Си путем создания простейшей обертки, как-то так:
const char* daynum (int i) { const char *s ={"mo", "tu", "we", "do", "fr", "sa", "su"}; return s[i]; }

Но частичное применение - это функциональный стиль, а не процедурный (кстати, из приведенного примера неясно, как сделать частичное применение, чтобы получить функцию без аргументов)

Еще пример: объявляется функция add с двумя аргументами int, возвращающая int. Далее объявляется функциональный тип single_param_fn, имеющий один аргумент int и возвращающий int. С помощью bind объявляются два функциональных объекта add4 и add5, построенные на основе функции add, у которой частично заданы аргументы.

Fn add(x: int, y: int) -> int { ret x + y; } type single_param_fn = fn(int) -> int; let add4: single_param_fn = bind add(4, _); let add5: single_param_fn = bind add(_, 5);

Функциональные объекты можно вызывать также, как и обычные функции.
assert (add(4,5) == add4(5)); assert (add(4,5) == add5(4));

4. Чистые функции и предикаты
Чистые (pure) функции - это функции, не имеющие побочных эффектов (в том числе не вызывающие никаких других функций, кроме чистых). Такие функции выдяляются ключевым словом pure.
pure fn lt_42(x: int) -> bool { ret (x < 42); }
Предикаты - это чистые (pure) функции, возвращающие тип bool. Такие функции могут использоваться в системе typestate (см. дальше), то есть вызываться на этапе компиляции для различных статических проверок.

Синтаксические макросы
Планируемая фича, но очень полезная. В Rust она пока на стадии начальной разработки.
std::io::println(#fmt("%s is %d", "the answer", 42));
Выражение, аналогичное сишному printf, но выполняющееся во время компиляции (соответственно, все ошибки аргументов выявляются на стадии компиляции). К сожалению, материалов по синтаксическим макросам крайне мало, да и сами они находятся в стадии разработки, но есть надежда что получится что-то типа макросов Nemerle .
Кстати, в отличие от того же Nemerle, решение выделить макросы синтаксически с помощью символа # считаю очень грамотным: макрос - это сущность, очень сильно отличающаяся от функции, и я считаю важным с первого взгляда видеть, где в коде вызываются функции, а где - макросы.

Атрибуты

Концепция, похожая на атрибуты C# (и даже со схожим синтаксисом). За это разработчикам отдельное спасибо. Как и следовало ожидать, атрибуты добавляют метаинформацию к той сущности, которую они аннотируют,
# fn register_win_service() { /* ... */ }
Придуман еще один вариант синтаксиса атрибутов - та же строка, но с точкой с запятой в конце, аннотирует текущий контекст. То есть то, что соответствует ближайшим фигурным скобкам, охватывающим такой атрибут.
fn register_win_service() { #; /* ... */ }

Параллельные вычисления

Пожалуй, одна из наиблее интересных частей языка. При этом в tutorial на данный момент не описана вообще:)
Программа на Rust состоит из «дерева задач». Каждая задача имеет функцию входа, собственный стек, средства взаимодействия с другими задачами - каналы для исходящей информации и порты для входящей, и владеет некоторой частью объектов в динамической куче.
Множество задач Rust могут существовать в рамках одного процесса операционной системы. Задачи Rust «легковесные»: каждая задача потребляет меньше памяти чем процесс ОС, и переключение между ними осуществляется быстрее чем переключение между процессами ОС (тут, вероятно, имеются в виду все-же «потоки»).

Задача состоит как минимум из одной функции без аргументов. Запуск задачи осуществляется с помощью функции spawn. Каждая задача может иметь каналы, с помощью которых она передает инфорацию другим задачам. Канал - это специальный шаблонный тип chan, параметризируемый типом данных канала. Например, chan - канал для передачи беззнаковых байтов.
Для передачи в канал используется функция send, первым аргументом которой является канал, а вторым - значение для передачи. Фактически эта функция помещает значение во внутренний буфер канала.
Для приема данных используются порты. Порт - это шаблонный тип port, параметризируемый типом данных порта: port - порт для приема беззнаковых байтов.
Для чтения из портов используется функция recv, аргументом которой является порт, а возвращаемым значением - данные из порта. Чтение блокирует задачу, т.е. если порт пуст, задача переходит в состояние ожидания до тех пор, пока другая задача не отправит на связанный с портом канал данные.
Связывание каналов с портами происходит очень просто - путем инициализации канала портом с помощью ключевого слова chan:
let reqport = port();
let reqchan = chan(reqport);
Несколько каналов могут быть подключены к одному порту, но не наоборот - один канал не может быть подключен одновременно к нескольким портам.

Typestate

Общепринятого перевода на русский понятия «typestate» я так и не нашел, поэтому буду называть это «состояния типов». Суть этой фичи в том, что кроме обычного контроля типов, принятого в статической типизации, возможны дополнительные контекстные проверки на этапе компиляции.
В том или ином виде состояния типов знакомы всем программистам - по сообщениям компилятора «переменная используется без инициализации». Компилятор определяет места, где переменная, в которую ни разу не было записи, используется для чтения, и выдает предупреждение. В более общем виде эта идея выглядит так: у каждого объекта есть набор состояний, которые он может принимать. В каждом состоянии для этого объекта определены допустимые и недопустимые операции. И компилятор может выполнять проверки - допустима ли конкретная операция над объектом в том или ином месте программы. Важно, что эти проверки выполняются на этапе компиляции.

Например, если у нас есть объект типа «файл», то у него может быть состояние «закрыт» и «открыт». И операция чтения из файла недопустима, если файл закрыт. В современных языках обычно функция чтения или бросает исключение, или возвращает код ошибки. Система состояний типов могла бы выявить такую ошибку на этапе компиляции - подобно тому, как компилятор определяет, что операция чтения переменной происходит до любой возможной операции записи, он мог бы определить, что метод «Read», допустимый в состоянии «файл открыт», вызывается до метода «Open», переводящего объект в это состояние.

В Rust существует понятие «предикаты» - специальные функции, не имеющие побочных эффектов и возвращающие тип bool. Такие функции могут использоваться компилятором для вызова на этапе компиляции с целью статических проверок тех или иных условий.

Ограничения (constraints) - это специальные проверки, которые могут выполняться на этапе компиляции. Для этого используется ключевое слово check.
pure fn is_less_than(int a, int b) -< bool { ret a < b; } fn test() { let x: int = 10; let y: int = 20; check is_less_than(x,y); }
Предикаты могут «навешиваться» на входные параметры функций таким вот способом:
fn test(int x, int y) : is_less_than(x,y) { ... }

Информации по typestate крайне мало, так что многие моменты пока непонятны, но концепция в любом случае интересная.

На этом все. Вполне возможно, что я все-же пропустил какие-то интересные моменты, но статья и так раздулась. При желании можно уже сейчас собрать компилятор Rust и попробовать поиграться с различными примерами. Информация по сборке приведена на

Я новичок в языке Rust, но он быстро становится моим любимым языком программирования. Хотя написание небольших проектов на Rust обычно менее эргономично и занимает больше времени(по крайней мере, со мной за рулём), это бросает вызов тому, как я думаю о дизайне программы. Мои бои с компилятором становятся менее частыми, после того как я узнаю что-то новое.

Сообщество Rust в последнее время сконцентрировало много своих усилий на асинхронном вводе/выводе, реализованном в виде библиотеки Tokio . И это замечательно.

Многим из участников сообщества, тем, которые не работали с веб-серверами и связанными с этим вещами, не ясно, чего же мы хотим добиться. Когда эти вещи обсуждались во времена версии 1.0, я тоже имел смутное представление об этом, никогда прежде не работав с этим раньше.

  • Что это такое - Async I/O ?
  • Что такое корутины(coroutines )?
  • Что такое легковесные потоки(lightweight threads )?
  • Что такое футуры?(futures )?

  • Как они сочетаются между собой?

Я покажу вам, как написать небольшую программу, которая скачивает ленту (feed ) в формате JSON, парсит и выводит список заметок на консоль в форматированном виде.

У нас все вылилось в очень лаконичный код. Как? Смотрите под катом.

Ключевое слово unsafe является неотъемлемой частью дизайна языка Rust. Для тех кто не знаком с ним: unsafe - это ключевое слово, которое, говоря простым языком, является способом обойти проверку типов(type checking ) Rust’а.

Существование ключевого слова unsafe для многих поначалу является неожиданностью. В самом деле, разве то, что программы не« падают» от ошибок при работе с памятью, не является особенностью Rust? Если это так, то почему имеется лёгкий способ обойти систему типов? Это может показаться дефектом дизайна языка.

Все же, по моему мнению, unsafe не является недостатком. На самом деле он является важной частью языка. unsafe выполняет роль некоторого выходного клапана - это значит то, что мы можем использовать систему типов в простых случаях, однако позволяя использовать всевозможные хитрые приёмы, которые вы хотите использовать в вашем коде. Мы только требуем, чтобы вы скрывали эти ваши приёмы( unsafe код) за безопасными внешними абстракциями.

Данная заметка представляет ключевое слово unsafe и идею ограниченной« небезопасности». Фактически это предвестник заметки , которую я надеюсь написать чуть позже. Она обсуждает модель памяти Rust, которая указывает, что можно, а что нельзя делать в unsafe коде.

Будучи новичком в Rust, я запутывался в различных способах представления строк. В книге о языке Rust есть глава « References and Borrowing» , в которой используется три различных типа строковых переменных в примерах: String , &String и &str .

Начнём с разницы между str и String: String - это расширяемая, выделяемая на куче структура данных, тогда как str - это неизменяемая строка фиксированной длины, где-то в памяти.

Многие программисты уже умеют программировать на объектно-ориентированных языках. Rust не является классическим объектно-ориентированным языком, но основные инструменты ООП можно применять и в нём.

В этой статье мы рассмотрим, как программировать на Rust в ООП-стиле. Мы будем делать это на примере: построим иерархию классов в учебной задаче.

Наша задача - это работа с геометрическими фигурами. Мы будем выводить их на экран в текстовом виде и вычислять их площадь. Наш набор фигур - прямоугольник, квадрат, эллипс, круг.

Rust - элегантный язык, который несколько отличается от многих других популярных языков. Например, вместо использования классов и наследования, Rust предлагает собственную систему типов на основе типажей. Однако я считаю, что многим программистам, начинающим своё знакомство с Rust(как и я), неизвестны общепринятые шаблоны проектирования.

В этой статье, я хочу обсудить шаблон проектирования новый тип (newtype), а также типажи From и Into , которые помогают в преобразовании типов.

Последнее время я много размышлял о шаблонах проектирования и приёмах, которые мы используем в программировании. Это и в самом деле прекрасно - начать исследовать проект и видеть знакомые шаблоны и стили, которые ты уже не раз встречал. Это облегчает понимание проекта и даёт возможность ускорить работу.

Иногда ты работаешь над новым проектом и понимаешь, что тебе нужно сделать что-то также, как ты делал это в прошлом проекте. Это может быть не часть функционала или библиотека, это может быть то, что нельзя обернуть в изящный макрос или маленький контейнер. Это может быть просто шаблон проектирования или структурная концепция, которые хорошо решают проблему.

Один интересный шаблон, часто применяемый к таким проблемам -« Конечный автомат». Предлагаю потратить немного времени, чтобы понять, что именно имеется ввиду под этим словосочетанием, и почему же это так интересно.

Ниже представлено графическое описание перемещения, копирования и заимствования в языке программирования Rust . В основном, эти понятия специфичны только для Rust и часто являются камнем преткновения для новичков.

Чтобы избежать путаницы, я попытался свести текст к минимуму. Данная заметка не является заменой различных учебных руководств, и лишь сделана для тех, кто считает, что визуально информация воспринимается легче. Если вы только начали изучать Rust и считаете данные графики полезными, то я бы порекомендовал вам отмечать свой код похожими схемами для лучшего закрепления понятий.

Реализация арифметики натуральных чисел с помощью чисел Пеано - популярная задача в обучение программированию. Мне было интересно, можно ли реализовать их на Rust.

Таким образом моя задача: записать и сложить натуральные числа с проверкой на уровне типов.

Если верить википедии« Аксио́мы Пеа́но - одна из систем аксиом для натуральных чисел, введённая в XIX веке итальянским математиком Джузеппе Пеано.»

Нас интересуют две из них - с помощью которых можно ввести и использовать натуральные числа:

  • 1 является натуральным числом
  • Число, следующее за натуральным, тоже является натуральным.

Дословно запишем на rust с помощью:

1 2 3 4 enum Nat { Zero , Succ (Nat ) }

Nat - это либо ноль, либо следующее натуральное число.

Замечание : проект futures-rs был реорганизован и многие вещи были переименованы. Где возможно, ссылки были обновлены.

Начинаем работу с futures

Этот документ поможет вам изучить контейнер для языка программирования Rust - futures , который обеспечивает реализацию futures и потоков с нулевой стоимостью. Futures доступны во многих других языках программирования, таких как C++ , Java , и Scala , и контейнер futures черпает вдохновение из библиотек этих языков. Однако он отличается эргономичностью, а также придерживается философии абстракций с нулевой стоимостью, присущей Rust, а именно: для создания и композиции futures не требуется выделений памяти, а для Task , управляющего ими, нужна только одна аллокация. Futures должны стать основой асинхронного компонуемого высокопроизводительного ввода/вывода в Rust, и ранние замеры производительности показывают, что простой HTTP сервер, построенный на futures, действительно быстр.

Эта документация разделена на несколько разделов:

  • « Здравствуй, мир!»;
  • типаж future;
  • типаж Stream ;
  • конкретные futures и поток( Stream);
  • возвращение futures;
  • Task и future;
  • локальные данные задачи.

Замечание : проект futures-rs был реорганизован и многие вещи были переименованы. Где возможно, ссылки были обновлены.

Одним из основных пробелов в экосистеме Rust был быстрый и эффективный асинхронный ввод/вывод . У нас есть прочный фундамент из библиотеки mio , но она очень низкоуровневая: приходится вручную создавать конечные автоматы и жонглировать обратными вызовами.

Нам бы хотелось чего-нибудь более высокоуровневого, с лучшей эргономикой, но чтобы оно обладало хорошей компонуемостью , поддерживая экосистему асинхронных абстракций, работающих вместе. Звучит очень знакомо: ту же цель преследовало внедрение futures (или promises) во многие языки , поддерживающие синтаксический сахар в виде async/await на вершине.

Примитивные целочисленные типы, поддерживаемые процессорами, являются ограниченным приближением к бесконечному набору целых чисел, которыми мы привыкли оперировать в реальной жизни. Это ограниченное представление не всегда совпадает с« реальными» числами, например 255_u8 + 1 == 0 . Зачастую программист забывает об этой разнице, что легко может приводить к багам.

Rust - это язык программирования, целью которого является защита от багов, он фокусируется на предотвращении наиболее коварных из них - ошибок работы с памятью, но также старается помочь программисту избежать остальных проблем: , игнорирования ошибок и, как мы увидим, переполнения целых чисел .

Немного об Iron

Iron - это высокоуровневый веб-фреймворк, написанный на языке программирования Rust и построенный на базе другой небезызвестной библиотеки hyper. Iron разработан таким образом, чтобы пользоваться всеми преимуществами, которые нам предоставляет Rust. Iron старается избегать блокирующих операций в своём ядре.

Философия

Iron построен на принципе расширяемости настолько, насколько это возможно. Он вводит понятия для расширения собственного функционала:

  • « промежуточные» типажи - используются для реализации сквозного функционала в обработке запросов;
  • модификаторы - используются для изменения запросов и ответов наиболее эргономичным способом.

С базовой частью модификаторов и промежуточных типажей вы познакомитесь в ходе статьи.

Создание проекта

Для начала создадим проект с помощью Cargo, используя команду:

Скомпилировав получим соответствующий исполняемый файл:

1 2 3 $ rustc hello.rs $ du -h hello 632K hello

632 килобайт для простого принта?! Rust позиционируется как системный язык, который имеет потенциал для замены C/C++, верно? Так почему бы не проверить аналогичную программу на ближайшем конкуренте?

В нашей среде широко распространена мысль о том, что одним из преимуществ сборщика мусора является простота разработки высоко-производительных lock-free структур данных. Ручное управление памятью в них сделать не просто, а GC с лёгкостью решает эту проблему.

Этот пост покажет, что, используя Rust, можно построить API управления памятью для конкурентных структур данных, которое:

  • Сделает возможным реализацию lock-free структуры данных, как это делает GC;
  • Создаст статическую защиту от неправильного использования схемы управления памятью;
  • Будет иметь сравнимые с GC накладные расходы(и более предсказуемые).

В тестах, которые я покажу ниже, Rust легко превосходит реализации lock-free очередей в Java, а саму реализацию на Rust легко написать.

Я реализовал схему управления памятью, основанную на эпохах(«epoch-based memory reclamation») в новой библиотеке Crossbeam, которая на сегодняшний день готова к использованию с вашими структурами данных. В этом посте я расскажу о lock-free структурах данных, алгоритме эпох и внутреннем API Rust.

Ошибки доступа к памяти и утечки памяти представляют собой две категории ошибок, которые привлекают больше всего внимания, так что на предотвращение или хотя бы уменьшение их количества направлено много усилий. Хотя их название и предполагает схожесть, однако они в некотором роде диаметрально противоположны и решение одной из проблем не избавляет нас от второй. Широкое распространение управляемых языков подтверждает эту идею: они предотвращают некоторые ошибки доступа к памяти, беря на себя работу по освобождению памяти.

Проще говоря: нарушение доступа к памяти - это какие-то действия с некорректными данными, а утечка памяти - это отсутствие определённых действий с корректными данными . В табличной форме:

У меня есть несколько мыслей об изучении языков программирования.

Во-первых, мы подходим к этому неправильно. Я уверен, что вы испытывали такие же ощущения. Вы пытаетесь изучить новый язык и не совсем понимаете, как в нём всё устроено. Почему в одном месте используется один синтаксис, а в другом другой? Все эти странности раздражают, и в итоге мы возвращаемся к привычному языку.

Я считаю, что наше восприятие языков играет с нами злую шутку. Вспомните, как вы последний раз обсуждали новый язык. Кто-то упомянул о нём, а кто-то другой поинтересовался его скоростью, синтаксисом или имеющимся веб-фреймворком.

Это очень похоже на обсуждение автомобилей. Слышали о новом УАЗ Рыбак? Насколько он быстр? Смогу ли я проехать на нём через озеро?

Когда мы похожим образом говорим о языках, то подразумеваем, что они взаимозаменяемы. Как машины. Если я знаю, как управлять Ладой Саранск, значит смогу вести и УАЗ Рыбак без каких-либо проблем. Разница только в скорости и приборной панели, не так ли?

Но представьте, как будет выглядеть PHP-автомобиль. А теперь вообразите, насколько будет отличаться автомобиль Lisp. Пересесть с одного на другой потребует гораздо большего, чем усвоить, какая кнопка управляет отоплением.

Примечание: Эта статья предполагает, что читатель знаком с Rust FFI (перевод), порядком байтов (endianess) и ioctl .

При создании биндингов к коду на С мы неизбежно столкнёмся со структурой, которая содержит в себе объединение. В Rust отсутствует встроенная поддержка объединений, так что нам придётся выработать стратегию самостоятельно. В С объединение - это тип, который хранит разные типы данных в одной области памяти. Существует много причин, по которым можно отдать предпочтение объединению, такие как: преобразование между бинарными представлениями целых чисел и чисел с плавающей точкой, реализация псевдо-полиморфизма и прямой доступ к битам. Я сфокусируюсь на псевдо-полиморфизме.

Уже сейчас вы могли обратить внимание на то, что синтаксис рассматриваемого языка программирования очень похож на синтаксис таких языков, как C/C++, ведь в обоих случаях для выделения комментариев используются два слэша, блоки кода обрамляются фигурными скобками, а аргументы функций - круглыми скобками. Также следует помнить о том, что для объявления функций используется ключевое слово fn , причем каждая программа должна иметь функцию main() . Восклицательный знак после имени функции println в данном случае указывает на то, что используется макрос (по сути, это удобная обертка над функцией print из библиотеки времени исполнения Rust).

Для компиляции программы следует просто выполнить команду:

Rustc hello.rs

В результате в директории с файлом исходного кода программы должен появиться бинарный файл с именем hello , для исполнения которого достаточно выполнить команду./hello . Но если вы обратите внимание на размер этого файла, вы будете в некоторой степени шокированы: он будет превышать 800 КБ. И все это нужно для работы такой простой программы? Ну, по умолчанию компилятор Rust осуществляет статическое связывание большей части библиотек времени исполнения с программой, поэтому вы можете скопировать бинарный файл в систему, в которой не установлено библиотек времени исполнения Rust и запустить его без каких-либо проблем. Однако, вы также можете сообщить компилятору о необходимости выполнения оптимизаций и динамического связывания:

Rustc -O C prefer-dynamic hello.rs

Теперь вы получите бинарный файл более приемлемого размера, равного 8 КБ, но в случае использования утилиты ldd вы обнаружите, что для корректной работы программы требуется наличие в системе динамической библиотеки libstd-<версия>.so .

Синтаксис языка программирования

Теперь, когда мы можем компилировать и запускать программы на Rust, я предлагаю разобраться с синтаксисом данного языка программирования и особо выделить его отличия от синтаксиса таких языков программирования, как C, C++ и других аналогичных:

Fn doubler (x: i32) -> i32 { x * 2 } fn main () { let a: i32 = 5; let b; b = doubler(a); println!("a, умноженное на 2 {}", b); match b { 1 ... 10 => println!("От 1 до 10"), _ => println!("Другое число"), } }

Если вы привыкли работать с языками C/C++, вы можете подумать, что данный код является каким-то странным, но он вполне логичен. Давайте начнем рассмотрение с функции main() : в первой строке let мы объявляем 32-битную целочисленную переменную a и присваиваем ей начальное значение 5. Мы могли бы пропустить указание типа переменной (i32 является стандартным типом переменных), а также не присваивать ей начальное значение, причем в этом случае она содержала бы нулевое значение. Обратите внимание на то, что при объявлении переменной и присваивании ей определенного значения таким же образом, как в случае переменной a из примера, вы не сможете впоследствии изменить ее значение, поэтому при компиляции следующего фрагмента кода будет сгенерировано сообщение об ошибке:

Let a: i32 = 5; a = 10;

По умолчанию переменные в Rust являются неизменяемыми, то есть, их значения не могут изменяться после инициализации. Вы должны явно объявлять изменяемые переменные аналогичным образом:

Let mut a: i32 = 5;

Для чего же это нужно? Это ведь лишняя работа, не так ли? Ну, по сути это действительно так, но, с другой стороны, данная особенность языка программирования помогает разрабатывать безопасные программы. Вы должны делать изменяемыми лишь те переменные, значения которых действительно должны изменяться. Rust заставляет вас быть настолько многословным, насколько это необходимо для максимально точного описания принципа работы программы: в строке выше приведено объявление знаковой целочисленной переменной a размером ровно в 32 бита с возможностью изменения ее значения в будущем.

Далее мы вызываем нашу функцию doubler с переменной a в качестве аргумента и сохраняем возвращаемое значение в переменной b . Обратите внимание на объявление функции doubler , которое находится в начале кода программы: в нем указывается тип параметра функции (i32) и тип возвращаемого значения (i32) после символов ->. Также несложно заметить, что в рамках функции выполняется единственная операция x * 2 , после которой даже не следует символа точки с запятой, как в обычном блоке кода на языке Rust; что же происходит там?

Оказывается, вы можете вернуть значение функции либо таким же образом, как в языке C, либо просто разместив выражение в последней строке кода функции, как было сделано в данном случае. И, ввиду того, что это всего лишь выражение, после него не нужно ставить точку с запятой.

Вернемся в функцию main() , в которой мы использовали макрос println!() для вывода результата; обратите внимание на методику подстановки значения переменной с помощью последовательности символов {} . Наконец, в примере демонстрируется чрезвычайно полезное ключевое слово "match" языка программирования Rust, которое позволяет значительно сократить объем кода в том случае, если вам необходимо выполнить большое количество операций if/else. В данном случае 1 … 10 является объявлением диапазона значений (от 1 до 10 включительно), а символ подчеркивания (_) соответствует всем остальным значениям.

В Rust строковый тип char позволяет использовать четырехбайтовые символы, то есть, любые символы Unicode, и это означает, что язык программирования уже на этапе проектирования был адаптирован для работы с различными языками и специальными символами. Еще одним полезным типом данных является кортеж, представляющий собой набор переменных различных типов:

Let x = (1, 2.0, "Hello");

В данном случае целочисленное значение, значение с плавающей точкой и строковое значение помещены в один и тот же кортеж. Данные значения являются неизменяемыми, причем доступ к ним может осуществляться аналогичным образом:

Println!("{}", x.2);

В результате будет осуществлен вывод значения третьего элемента кортежа x , то есть, строки "Hello" . Как и в случае с обычными массивами, которые также поддерживаются в Rust, нумерация элементов кортежей начинается с нуля. Вы можете использовать кортежи для возврата нескольких значений из функции:

Fn switch(input: (i32, i32)) -> (i32, i32) { (input.1, input.0) } fn main() { let x = (10, 50); let y = switch(x); println!("{}, {}", y.0, y.1); }

В данном случае функция с именем switch() принимает кортеж с двумя 32-битными целочисленными значениями и сохраняет их в переменной input . При этом она также возвращает кортеж с двумя целочисленными значениями. В рамках данной функции используется простое выражение, позволяющее поменять местами элементы кортежа и вернуть получившийся кортеж.

В рамках функции main() создается кортеж с именем x , содержащий значения 10 и 50, а также кортеж с именем y , содержащий значения, которые были возвращены после вызова функции switch() . Далее осуществляется простой вывод значений кортежа на экран (50, 10).

Совет: Если вам не терпится самостоятельно разобраться с возможностями Rust, рекомендуем начать с чтения официальной документации, расположенной по адресу https://doc.rust-lang.org/book .

Это было краткое описание синтаксиса и возможностей языка программирования Rust; если вы желаете узнать больше о данном языке программирования из специальной серии статей, дайте нам знать об этом!

Понравилась статья? Поделиться с друзьями: